If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2=279
We move all terms to the left:
3n^2-(279)=0
a = 3; b = 0; c = -279;
Δ = b2-4ac
Δ = 02-4·3·(-279)
Δ = 3348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3348}=\sqrt{36*93}=\sqrt{36}*\sqrt{93}=6\sqrt{93}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{93}}{2*3}=\frac{0-6\sqrt{93}}{6} =-\frac{6\sqrt{93}}{6} =-\sqrt{93} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{93}}{2*3}=\frac{0+6\sqrt{93}}{6} =\frac{6\sqrt{93}}{6} =\sqrt{93} $
| 9x-3(x-2)=9x+25-2x | | 11b-15b=12 | | 3(2x+8)=-11+17 | | -5.2+a=a | | 4(3+2q)=8q+12 | | 51=3-(6-12r) | | 3,282=n+1,111 | | 3x+60+2x+45=180 | | C-c+2c-1=17 | | 8=a/9-4 | | 4+x−17=22 | | 49=4.5x-2x | | 15(12x)+20x=2400 | | 5x+16+104=180 | | x^-3x-16=0 | | 2x+7x+3=2(4x1)+2 | | 3(4x+6)=-28+34 | | -8=-20+2-3x | | 1/5(3.5)+1/t(3.5)=1 | | 5(-3x-2)-(2x-3)=-4(4x+5)+14 | | 3k+2k=600 | | 6.8x=x | | |9-6n|=51 | | 2x+22=154 | | 12.7(h+3)=6(h-3) | | -2(3x-5)=2x+10-8x | | 9=-3/7y | | 20x²+40=0 | | 4.2x^-35x=0 | | 1.8y+33=103.1 | | 6-x-3=3 | | c−c+2c−1=17 |